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Abstract—This paper is devoted to the solvability of an optimal control problem for the coef-
ficient at the highest derivative and the quantum potential in a nonlinear and nonstationary
Schrödinger-type equation. It generalizes the well-known equation of quantum mechanics. The
simultaneous control problem for several coefficients of the state equation is considered, with a
performance criterion specified by the residual of the boundary data of the solution. For this
problem, well-posedness conditions are established and an existence theorem for its solution is
proved. In addition, the optimization problem with a perturbed performance criterion is stud-
ied, and an existence and uniqueness theorem for its solution is proved. An explicit form of the
first variation of the performance criterion is obtained, and an iterative algorithm for solving
these problems is described. The results are novel for the standard Schrödinger equation as
well.
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1. INTRODUCTION

The Schrödinger-type equation generalizes the well-known Schrödinger equation of quantum
mechanics and is used as a model in the theories of superconductivity and other fields of prac-
tice. This equation often arises in the diagnosis of nanostructured materials and atomic-molecular
computing, when intra-atomic and intramolecular interaction potentials, laser pulses, and mate-
rial characteristics need to be controlled. This equation is widely used in quantum information
processing, adaptive optics and quasi-optics, bifurcation analysis of nonlinear models, investiga-
tion of magnetic quantum phenomena, and other applications; for example, see [1–9] and other
publications. Linear and bilinear quantum systems, optimization problems of these systems with
one control factor, with real or complex interaction potential, etc. were studied earlier. The finite
difference method for numerically solving such control problems was developed in [9–11].

In modern practice it is often necessary to control many coefficients, the most influential quantum
characteristics of nonlinear and nonstationary processes [1, 4–10]. Such control problems are most
challenging for theoretical analysis and numerical solution: they are nonlinear, have an implicitly
defined state operator, and often belong to the class of ill-posed problems [9, 10]; moreover, there are
no direct methods for their observation and no formulation of performance criteria. The observation
definition form is especially important for constructing performance criteria in quantum control
processes since it must correspond to the quantum character of the processes under consideration.
In this sense, boundary observation is convenient for measurements as well as for processing of
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results. It is crucial to investigate control processes for the coefficients at the higher derivatives
of the state equation [1–3, 6–11]. Below, we study a simultaneous optimal control problem for
the coefficient at the highest derivative and the quantum potential in a nonlinear nonstationary
Schrödinger-type equation. The optimization problem with a “perturbed” performance criterion is
also considered. Existence and uniqueness theorems for the solution of these problems are proved,
and iterative algorithms for their solution are described. The main results are novel also for the
standard Schrödinger equation of quantum mechanics.

2. PROBLEM STATEMENT

Let l > 0 and T > 0 be given numbers, 0 � x � l, 0 � t � T , Ωt = (0, l)× (0, t), Ω = ΩT , and
ψ(x, t) be a complex wave function with the spatial coordinate x and time t. The functional
spaces used below were introduced, e.g., in [8, 11] and other publications. Accordingly, Lp(0, l)
is the Lebesgue space of measurable functions on (0, l) that are integrable with degree p � 1, and
Ck[0, T ;B) is the Banach space of k � 0 times continuously differentiable functions on [0, T ] whose
values belong to a Banach space B.

Let W k
p (0, l) and W k,m

p (Ω) be the Sobolev spaces of functions with generalized derivatives of
orders k � 0 in x and m � 0 in t that are integrable with degree p � 1. We denote by W 1∞(0, l) ={
w : w ∈ L∞(0, l), dwdx ∈ L∞(0, l)

}
the Banach space with the properties mentioned. The symbols ∀o

and ∀ mean that the above properties hold for almost all and all, respectively, values of an appro-
priate variable. Positive constants independent of the values being estimated will be denoted by cj ,
j = 0, 1, 2, . . . . From this point onwards, ai, bi, si, i = 0, 1, 2, . . . , are given positive numbers.

Consider a controlled process described by the following initial boundary-value problem for the
Schrödinger-type equation:

iρ2
∂ψ

∂t
+

∂

∂x

(
v0(x)

∂ψ

∂x

)
− v1(x)ψ + a1|ψ|2ψ = f(x, t), (x, t) ∈ Ω, (1)

ψ(x, 0) = ϕ(x), x ∈ (0, l), (2)

∂ψ(0, t)

∂x
=

∂ψ(l, t)

∂x
= 0, t ∈ (0, T ), (3)

where ρ > 0 and a1 are given real numbers; ϕ(x) and f(x, t) are given complex measurable functions

satisfying the conditions ϕ ∈ W 2
2 (0, l),

dϕ(0)
dx = dϕ(l)

dx = 0, and f ∈W 0,1
2 (Ω); the coefficients v0(x) and

v1(x) of this equation are real control functions.

Assume that an additional boundary observation has the form

ψ(0, t) = y0(t), ψ(l, t) = y1(t), 0 � t � T, (4)

where y0 = y0(t) and y1 = y1(t) are given complex functions from the space L2(0, T ). Let the vector
function v = v(x) = (v0(x), v1(x)) be an element of the following set of admissible controls: V ≡
{v = (v0, v1) : v0 ∈ W 1

2 (0, l), v1 ∈ L2(0, l), 0 < b0 � v0(x) � b1,
∣∣∣dv0(x)dx

∣∣∣ � b2, 0 < b3 � v1(x) � b4,

∀ox ∈ (0, l)}, where bj > 0, j = 0, 1, . . . , 4, are given numbers. For each element v ∈ V , the wave
function ψ = ψ(x, t) ≡ ψ(x, t; v) belonging to the space B ≡ C0([0, T ];W 1

2 (0, l))∩C1([0, T ];L2(0, l))
will be called the solution of the primal problem if it satisfies equation (1) for any t∈ [0, T ] and
almost all x∈ (0, l) and conditions (2) and (3) for almost all x∈ (0, l) and t∈ (0, T ). The primal
problem is an initial boundary-value problem for the Schrödinger-type equation (1). This prob-
lem was studied in [1–11] and other publications. As was established therein, under the above
conditions, for each v ∈V it has a unique solution in the space B with the a priori upper bound

‖ψ(·, t)‖W 1
2 (0,l)

+

∥∥∥∥∂ψ(·, t)∂t

∥∥∥∥
L2(0,l)

� c0
(
‖ϕ‖W 1

2 (0,l)
+ ‖f‖L2(0,T ;W 1

2 (0,l))

)
. (5)
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Now consider an optimal control problem for the function v = v(x) = (v0(x), v1(x)) in equation (1)
with the initial boundary conditions (2) and (3): it is required to minimize the performance criterion

J0(v) = β0‖ψ(0, ·) − y0‖2L2(0,T ) + β1‖ψ(l, ·) − y1‖2L2(0,T ) (6)

on the set V, where the numbers β0 > 0 and β1 > 0 are given and β0 + β1 = 1. Note that problems
with controls in state equation coefficients often have unstable solutions (see [9–12], etc.). Therefore,
it is reasonable to study the problem with a perturbed performance criterion. Below we will
minimize the criterion

Jα(v) = β0‖ψ(0, ·) − y0‖2L2(0,T ) + β1‖ψ(l, ·) − y1‖2L2(0,T ) + α‖v − ω‖2H (7)

on the set V under conditions (1)–(3), where α � 0 is a given number, H ≡ W 1
2 (0, l) × L2(0, l) is

the space of controls, and the element ω ∈H is a given vector function. For the sake of brevity,
problems (1)–(3), (6) and (1)–(3), (7) will be called problems (6) and (7), respectively.

3. SOLVABILITY OF THE OPTIMAL CONTROL PROBLEM

Theorem 1. For any α � 0, problem (7) has at least one solution.

The proof is provided in the Appendix.

Let H∞ ≡ W 2∞(0, l)×W 1∞(0, l) and H1 ≡ W 4
2 (0, l)×W 1

2 (0, l). We study the optimal control

problem on the set V1 ≡
{
v = (v0, v1); v0 ∈W 2

2 (0, l), v1 ∈W 1
2 (0, l), 0 < s0 � v0(x) � s1,

∣∣∣dv0(x)dx

∣∣∣ � s2,∣∣∣d2v0(x)dx2

∣∣∣ � s3, 0 < s4 � v1(x) � s5,
∣∣∣dv1(x)dx

∣∣∣ � s6, ∀x∈ (0, l)
}
, where si > 0, i = 0, 1, 2, 3, 4, 5, 6, are

given numbers. Assume that the functions ϕ(x) and f(x, t) satisfy the conditions d3ϕ
dx3 ∈L2(0, l)

and ∂f
∂x ∈W 0,1

2 (Ω). Under these conditions, for each element v = v(x) from the set V1, the so-
lution of the primal problem (1)–(3) exists, is unique for each t∈ [0, T ], belongs to the space
B1 = C0([0, T ];W 4

2 (0, l)) ∩ C1([0, T ];L2(0, l)), and obeys the a priori upper bound

‖ψ(·, t)‖W 1
2 (0,l)

+

∥∥∥∥∂ψ(·, t)∂t

∥∥∥∥
L2(0,l)

+

∥∥∥∥∥∂
2ψ(·, t)
∂t2

∥∥∥∥∥
L2(0,l)

� c1

(
‖ϕ‖W 1

2 (0,l)
+ ‖f‖W 1,1

2 (Ω) +

∥∥∥∥∂f∂x
∥∥∥∥
W 1,1

2 (Ω)

)
, ∀t∈ [0, T ].

(8)

For details, see [9, 10].

Consider now an analog of problem (7) on the set V1 ⊆ H1: it is required to minimize the
performance criterion

Jα(v) = β0 ‖ψ(0, ·) − y0‖2L2(0,T ) + β1 ‖ψ(l, ·) − y1‖2L2(0,T ) + α ‖v − ω‖2H1
(9)

under conditions (1)–(3), where α � 0 is a given number, H1 = W 2
2 (0, l) ×W 1

2 (0, l) is the space of
controls, and ω ∈H1 is a given vector function. It is easy to check that V1 ⊆ V . If α = 0, V = V1,
and H = H1, problems (7) and (9) will coincide with problem (6). For V = V1 and H = H1,
problems (7) and (9) become identical. Examples similar to those in [9, 10] demonstrate that, for
α = 0, the solution of problem (7) or (9) is unstable and non-unique. However, for α > 0, we have
the following result.

Theorem 2. There exists an everywhere dense subset K in the space H1 such that problem (9)
has a unique solution for all α > 0 and ω ∈K.

The proof is provided in the Appendix.
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4. CONCLUSIONS

The above theorems provide a basis for solving the problems under consideration. According to
the existing experience in solving optimal control problems [2, 9, 10, 13, 16, 17], iterative numerical
methods are the most effective tools for this purpose. Maple, Matlab, ANSYS, and similar software
packages with visualization of the results are preferable and provide a convenient apparatus for
numerical solution. Consider an iterative process for solving problem (7) or (9) based on the
following numerical scheme of the conditional gradient method:

v(k+1)(x) = v(k)(x) + λk

(
w(k)(x)− v(k)(x)

)
, k = 0, 1, 2, . . . ,

where v(0)(x) is an initial iteration step, which can be any element of the set V (or V1); the algorithm

parameter λk ∈ (0, 1) is chosen from the condition J0
(
v(k+1)

)
< J0

(
v(k)

)
; the element w(k)(x),

k = 1, 2, . . . , is determined by minimizing the linear criterion

δJ0(v
(k), w − v(k)) + 2a〈v(k) + v(k−1), w − v(k)〉 → ∞,

on the set V (or V1), where δJ0(v) is the first variation of the criterion J0(v).

Let h∈H be an increment of control v ∈V such that v + h∈ V . The first variation of the
criterion J0(v) has the form

δJ0(v, h) =

∫
Ω

[
Re

(
∂ψ(x, t)

∂x

∂ϕ(x, t)

∂x

)
h0(x, t) + Re (ψ(x, t)ϕ(x, t)) h1(x, t)

]
dxdt,

where ψ(x, t) and ϕ(x, t) are the solutions of the primal and conjugate problems, respectively.
Following the above scheme, we find a control sequence (v(k)). For the problems under consideration,
this sequence converges under sufficient conditions presented in [9, 10, 13, 14] and other publications.
In addition, the interested reader can find therein wide classes of iterative processes based on
different modifications of the gradient, Newton, and other methods for solving extremal problems
as well as numerical analysis and regularization of the solution in the case of problem instability.

APPENDIX

Proof of Theorem 1. The existence of a minimizing sequence (v′(x))∈ V for the solution of
problem (7) follows from the boundedness from below of the criterion Jα(v). Let us denote ψk =
ψk(x, t) ≡ ψ(x, t; vk), k = 1, 2, . . . , and H∞ ≡ W 1∞(0, l) × L∞(0, l). Since the set V is a closed,
bounded, and convex subset in the space H, it is possible to extract a subsequence from the

sequence (vk), denoted again by (vk) for simplicity, so that vk0 → v0 (*) weakly in L∞(0, l),
dvk0
dx →

dv0
dx (*) weakly in L∞(0, l), and vk1 → v1 (*) weakly in L∞(0, I) as k → ∞. Moreover, by the
definition of the set V, it is (*) weakly closed in the space H. Due to the above limit relations and
the space W k∞(0, l) embedded into L∞(0, l), we obtain vk0 → v0 strongly in L∞(0, l) as k → ∞.

The a priori bound (5) implies that the sequence {ψk(x, t)} is uniformly bounded in the norm
of B. Then it is possible to extract a subsequence from the sequence {ψk(x, t)}, denoted again by

{ψk(x, t)} for simplicity, so that ψk(·, t) → ψ(·, t) in W 2
2 (0, l) and ∂ψk(·,t)

∂t → ∂ψ(·,t)
∂t in L2(0, l) for

t∈ [0, T ] as k → ∞. Since the space B is compactly embedded into C0([0, T ];W 2
0 (0, l)) (see [15]),

we have ‖ψk(·, l) − π(·, l)‖W 2
0 (0,l)

→ 0 as k → ∞ uniformly in t∈ [0, T ]. As is easily verified, each
element of the sequence satisfies the identity

l∫
0

{
iρ2∂ψk(x, t)

∂t
+

∂

∂x

(
vko (x)

∂ψk(x, t)

∂x

)
− vk1 (x)ψk(x, t)

}

+ a1‖ψk(x, t)
2‖ψ(x, t) − f(x, t)‖η(x)dx = 0, k = 1, 2, . . .

(A.1)
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for all t∈ [0, T ] and an arbitrary function η ∈L2(0, l). Furthermore, ψk(x, t) = 1, 2, . . . , satisfy the
initial and boundary conditions (2) and (3). For each t∈ [0, T ] and any function η ∈L2(0, l), passing
to the limit on k = 1, 2, . . . in identity (A.1) yields the same identity for the limit function ψk(x, t).
By analogy, it is straightforward to verify that the limit function ψk(x, t) satisfies equation (1) for
each t∈ [0, T ] and almost all x∈ (0, l). For t = 0 we obtain ‖ψk(·, 0)−ψ(·, 0)‖L2(0,l) → 0 as k → ∞.
Therefore, as k → ∞, passing to the limit in

‖ψk(·, 0) − ϕ‖L2(0,l) � ‖ψk(·, 0) − ψk(·, 0)‖L2(0,l) + ‖ψk(·, 0) − ϕ‖L2(0,l)

shows that the function ψ(x, t) satisfies the initial condition (2) for almost all x∈ (0, l). Finally,
we prove that the limit function ψk(x, t) satisfies the boundary conditions (3). Indeed, for any

functions from the space B, the limit relations ∂ψk(s,·)
∂x → ∂ψ(s,·)

∂x , where s = 0 and s = l, are valid
weakly in L2(0, T ) as k → ∞. With this relation, as k → ∞, passing to the limit in the equality

T∫
0

∂ψ(s, t)

∂x
η(t)dt =

T∫
0

(
∂ψ(s, t)

∂x
− ∂ψk(s, t)

∂x

)
η(t)dt+

T∫
0

∂ψk(s, t)

∂x
η(t)dt, s = 0, l,

gives the expression

T∫
0

∂ψ(s, t)

∂x
η(t)dt = 0, s = 0, l,

for any function η(t) from L2(0, T ). Hence, for almost all t∈ (0, T ), the function ψ(x, t) satisfies the
boundary conditions (3). Thus, the limit function ψ(x, t) of the sequence (ψk(x, t)) is a solution of
the primal problem (1)–(3) for each control v from V. In addition, this function is the weak limit
of the weakly convergent sequence {ψk(x, t)} for each t∈ [0, T ]. Since the space B is compactly em-
bedded into C([0, l];L2(0, T )), we have ‖ψk(x, t)− ψ(x, t)‖L2(0,T ) → 0 as k → ∞ for each x∈ [0, l].
Consequently, for x = 0 and x = l, from the weak lower semicontinuity of the norm in L2(0, T ) and
the nonnegativity of the numbers β0, βl, and α, we arrive at the inequality Jα∗ � Jα (v) � Jα∗.
In other words, the element v = v(x)∈ V is a solution of problem (7) for any α � 0. The proof of
Theorem 1 is complete.

Proof of Theorem 2. We check the continuity of the criterion J0(v) on the set V1. Let δψ =
δψ (x, t) = ψ (x, t; v + δv) − ψ (x, t; v) , where δv ∈H1 is an increment of an element v ∈V1 such
that v + δv ∈V1, and let ψ (x, t; v) be the solution of the primal problem (1)–(3) for element v ∈V1.
Due to (1)–(3), the function δψ = δψ (x, t) satisfies the equation

iρ2
∂δψ

∂t
+

∂

∂x

(
(v0(x) + δv0(x))

∂δψ

∂x

)
− (v1(x) + δv1(x))δψ

+ a1
(
|ψδ|2 + |ψ|2

)
δψ + a1ψδψδψ = − ∂

∂x

(
δv0(x)

∂ψ

∂x

)
+ δv1(x)ψ, (x, t)∈Ω,

(A.2)

with homogeneous initial boundary conditions. To estimate the solution of this initial boundary-
value problem, we multiply both sides of equation (A.2) by the function δψ(x, t) and integrate the
result over the domain Ωt. In view of the homogeneity of the initial condition, subtracting from the
resulting equality its complex conjugate yields

‖ρδψ(·, t)‖2L2(0,l)
= 2a1

∫
Im(ψψδ , (δψ)

2) dxdτ

+ 2

∫
Im

[(
− ∂

∂x

(
δv0(x)

∂ψ

∂x

)
+ δv1(x)ψ

)
δψ

]
dxdt, ∀t∈ [0, T ].
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Applying the Cauchy–Bunyakovsky–Schwarz inequality to this identity, we obtain

‖ρδψ(·, t)‖2L2(0,l)
� 2|a1|

∫
Ωt

|ψδ| |ψ| δψ2 dx dτ

+

∫
Ωt

[
− ∂

∂x

(
δv0(x)

∂ψ

∂x

)
+ δv1(x)ψ

]2
dx dτ +

∫∫
Ωt

|δψ|2 dx dτ, ∀ t∈ [0, T ].

(A.3)

As is known [15], if a function ϕ(., t)∈W 1
2 (0, l) is nonzero at the ends of the interval [0, l],

it satisfies the inequality

‖ϕ(·, t)‖L2(0,l)
� c

∥∥∥∥∂ϕ(·, t)∂x

∥∥∥∥
1
2

L2(0,l)
‖ϕ(., t)‖2L2(0,l)

+ d ‖ϕ‖L2(0,l)
,

where c > 0, a, and d > 0 are some constants. From this inequality and the a priori bound (8) for
the solution of the primal problem (1)–(3), for each V ∈V1, it follows that

‖ψ(·, t)‖2L2(0,l)
� c4; ‖ψ2(·, t)‖2L2(0,l)

� c4. (A.4)

By these inequalities in equation (A.2), we have

‖δψ(·, t)‖2L2(0,l)
�
(
2|a1|c24 + 1

) t∫
0

‖δψ(·, τ)‖2L2(0,l)
dτ

+

∫
Ω

∣∣∣∣− ∂

∂x

(
δv0(x)

∂ψ

∂x

)
+ δv1(x)ψ

∣∣∣∣
2

dxdτ, ∀ t∈ [0, T ].

Estimating the left-hand side of this inequalities gives

∫
Ωt

∣∣∣∣− ∂

∂x

(
δv0(x)

∂ψ

∂x

)
+ δv1(x)ψ

∣∣∣∣
2

dxdτ � c5

t∫
0

‖ψ(·, τ)‖2W 2
2 (0,l)

dτ‖δv‖2B1 .

Considering this inequality in equation (A.2), we obtain

‖δψ(·, t)‖2L2(0,l)
� c6

t∫
0

‖δψ(·, τ)‖2L2(0,l)
dτ + c7‖δv‖2H , ∀ t∈ [0, T ].

With Gronwall’s lemma applied to this inequality, it follows that

‖δψ(·, t)‖2L2(0,l)
� c8‖δv‖2B1

, ∀ t∈ [0, T ]. (A.5)

Now it is necessary to estimate the function ∂δψ
∂x (x, t). For this purpose, we multiply both sides of

equation (A.2) by L(δψ) = − ∂
∂x

(
(v0(x) + δv0(x))

∂δψ
∂x

)
and integrate the resulting expression over

the domain Ωt :∫
Ωt

(
iρ2

∂δψ

∂t
L(δψ) − |L(δψ)|2 − (v0(x) + δv0(x))δψL(δψ)

+ a1
(
|ψδ |2 + |ψ|2

)
δψL(δψ) + a1ψδψδψL(δψ)

)
dxdτ

=

∫
Ω

(
∂

∂x

(
δv0(x)

∂ψ

∂x

)
− δv1(x)ψ

)
L(δψ)dxdτ, ∀ t∈ [0, T ].
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We integrate on x in both sides of this equation and subtract from the resulting equality its
complex conjugate:

∫
∂t

ρ2
∂

∂t

(
vo(x) + δvo(x)

)∣∣∣∂δψ
∂x

∣∣∣2 dxdτ

= 2

∫
Ωt

[
Im
(
vo(x) + δvo(x)

)(dv1(x)
dx

+
dδv1(x)

dx

)
δψ

∂δψ

∂x

]
dxdτ

− 2a1

∫
Ωt

[
Im
(
vo(x) + δvo(x)

) ∂

∂x

(∣∣∣ψδ

∣∣∣2 + ∣∣ψ∣∣∣2)δψ∂δψ

∂x

]
dxdτ

− 2a1

∫
Ωt

[
Im
(
vo(x) + δvo(x)

) ∂

∂x

(
ψδψ

)
δψ

∂δψ

∂x

]
dxdτ

− 2a1

∫
Ωt

⎡
⎣Im(vo(x) + δvo(x)

)
ψδψ

(
∂δψ

∂x

)2
⎤
⎦ dxdτ

−2

∫
Ωt

[
Im
(
vo(x) + δvo(x)

) ∂

∂x

[
∂

∂x

(
δvo(x)

∂ψ

∂x

)
− δv1(x)ψ

]
∂δψ

∂x

]
dxdτ, ∀ t∈ [0, T ].

Note that v + δv ∈V1 and δψ (x, 0) = 0, x∈ (0, l). Due to the Cauchy–Bunyakovsky–Schwarz
inequality and the bounds (A.4), we have

s0

∥∥∥∥∂δψ(·, t)∂x

∥∥∥∥
2

L2(0,l)
� c9

t∫
0

∥∥∥∥∂δψ(·, τ)∂x

∥∥∥∥
2

L2(0,l)
dτ + c10

∫
Ωt

|δψ|2 dxdτ

+ 4s1

∫
Ωt

|δv0(x)|2
∣∣∣∣∣∂

3ψ

∂x3

∣∣∣∣∣
2

dxdτ + 8s1

∫
Ωt

∣∣∣∣dδv0(x)dx

∣∣∣∣
2
∣∣∣∣∣∂

2ψ

∂x2

∣∣∣∣∣
2

dxdτ

+ 4s1

∫
Ωt

∣∣∣∣dδv1(x)dx

∣∣∣∣
2

|ψ|2 dxdτ + 4s1

∫
Ωt

(∣∣∣∣∣d
2δv0(x)

dx2

∣∣∣∣∣+ |δv1(x)|
)2 ∣∣∣∣∂ψ∂x

∣∣∣∣
2

dxdτ

+ c8 |a1| (2 + s1)

∫
Ωt

(∣∣∣∣∂ψδ

∂x

∣∣∣∣+
∣∣∣∣∂ψ∂x

∣∣∣∣
)2

|δψ|2 dxdτ, ∀t∈ [0, T ],

(A.6)

where c9 = s1(|a1|c4 + |a1|c24 + 1 + s5) and c10 = s(|a1|c24 + s5). Now it is necessary to estimate
the last term on the right-hand side of this inequality. As is known [15], an arbitrary function
ϕ(·, t)∈Wλ(0, l), ∀ t∈ [0, T ] satisfies the inequality

∥∥∥∥∂ϕ(·, t)∂x

∥∥∥∥
L∞(0,l)

� c0

∥∥∥∥∂ϕ(·, t)∂x

∥∥∥∥
L2(0,l)

‖ϕ(·, t)‖L2(0,l), ∀ t∈ [0, T ], (A.7)

where c0 > 0 is some constant. With the functions ∂ψδ(x,t)
∂x and ∂ψ(x,t)

∂x taken instead of the function
ϕ(x, t) in this inequality, we utilize (A.5) and (A.6) to obtain

∂ψδ(·, t)
∂x

∣∣∣∣
L∞(0,l)

� c11,

∣∣∣∣∂ψ(x, t)∂x

∣∣∣∣
L∞(0,l)

� c11. (A.8)

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 4 2025



OPTIMAL CONTROL OF THE COEFFICIENTS 313

Using these bounds in (7) and inequality (A.5), we have

∥∥∥∥∂δψ(·, t)∂x

∥∥∥∥
2

L2(0,l)

� c12

t∫
0

∥∥∥∥∂ψ(·, t)∂x

∥∥∥∥
2

L2(0,l)

dτ + c13

∥∥∥∥δv
∥∥∥∥
2

B1

.

With Gronwall’s lemma applied to this inequality, it follows that

∥∥∥∥∂ψ(x, t)∂x

∥∥∥∥
2

L2(0,l)

� c15‖δv‖2B1
, ∀ t∈ [0, T ].

Combining this bound with (A.5) gives

∥∥∥∥δψ(·, t)
∥∥∥∥
2

W 1
2 (0,l)

� c15‖δv‖2B1
, ∀ t∈ [0, T ]. (A.9)

Let us transform the increment of the criterion J0(v) on an arbitrary element v ∈V1 :

ΔJ0(ν) = J0(ν + δν)− J0(ν) = 2β0

T∫
0

Rε [(ψ(0, t) − y0(t)) δψ(0, t)] dt

+2β1

t∫
0

Rε [(ψ(l, t) − y1(t)) δψ(l, t)] dt+ β0

∥∥∥∥δψ(x, t)
∥∥∥∥
2

L2(0,T )

+ β1

∥∥∥∥δψ(x, t)
∥∥∥∥
2

L2(0,T )

.

(A.10)

By the embedding theorem, for the trace of functions from the space W 1,0
2 (Ω), we have

‖ψ(0, ·)‖2L2(0,T ) + ‖ψ(l, ·)‖2L2(0,T ) � c16‖ψ‖2W 1,0
2 (Ω)

,

‖δψ(0, ·)‖2L2(0,T ) + ‖δψ(l, ·)‖2L2(0,T ) � c16‖δψ‖2W 1,0
2 (Ω)

.

These inequalities imply

‖ψ(0, ·)‖2L2(0,T ) + ‖ψ(l, ·)‖2L2(0,T ) � c17, (A.11)

‖δψ(0, ·)‖2L2 (0,T ) + ‖δψ(l, ·)‖2L2(0,T ) � c17. (A.12)

Let us apply the Cauchy–Bunyakovsky–Schwarz inequality to the expression (A.10) and use (A.11)
and (A.12). In view of the condition y0, y1 ∈L2(0, l), we finally derive the upper bound

|ΔJ0(v)| � c19(‖δv‖B1 + ‖δv‖2B1
), v ∈V1.

According to this inequality, the criterion J0(v) is continuous on the set V1. The criterion J0(v)
is positive: J0(v) � 0 for v∈V1. Furthermore, the set V1 is a closed, bounded, and convex set in the
Hilbert space H1. Hilbert spaces are uniformly convex. If a functional I0(v) is lower semicontinuous
and bounded from below on a closed bounded set U ⊂ X of a uniformly convex Banach space X,
then there exists an everywhere dense subset K ⊂ X such that, for any w∈K and any α > 0, the
functional I0(v) + α‖v − w‖2X achieves the minimum value on a single element of the set K ∩ U [16].
For problem (9), all conditions and statements of this theorem are valid, and its proof is complete.
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